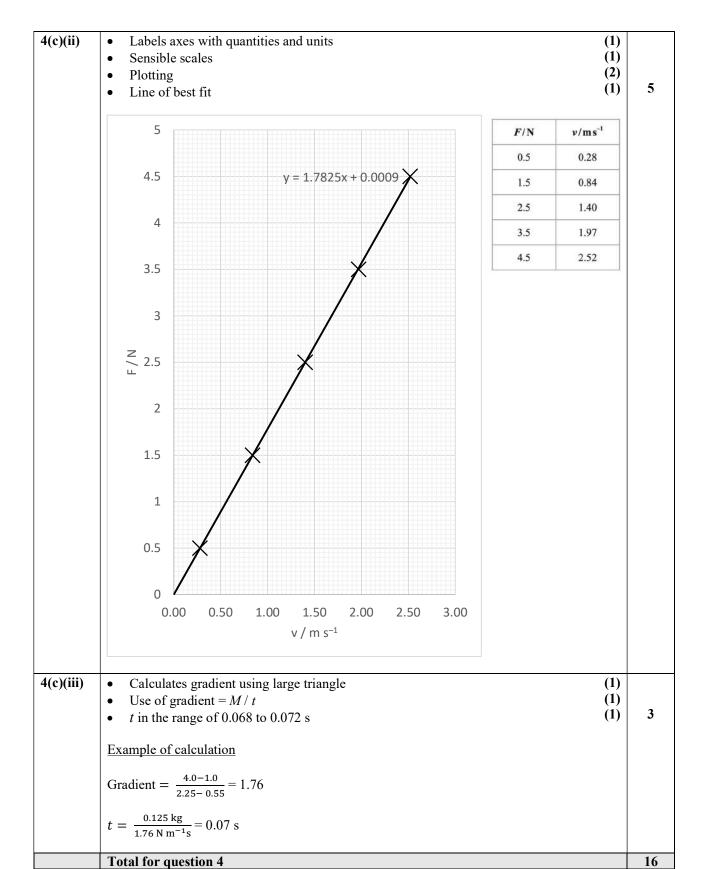


Mark Scheme (Results)

January 2023


Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH13) Paper 01 Unit 3: Practical Skills in Physics I

Question Number	Answer		Mark
1(a)(i)	• 0.001 MΩ	(1)	1
1(a)(ii)	 Use of percentage uncertainty = half resolution / measurement × 100% Percentage uncertainty = 0.173 % Accept use of percentage uncertainty = resolution / measurement × 100%, giving 	(1) (1)	2
	0.346% for 1 mark only. Allow e.c.f. from 1(a)(i). $\frac{\text{Example of calculation}}{\text{Percentage uncertainty}} = 0.0005 \text{M}\Omega / 0.289 \text{M}\Omega \times 100 \% = 0.173 \%$		
1(b)(i)	 Mark 1(b)(i) and 1(b)(ii) holistically. Use ruler to measure length between the electrodes and measure width of shading Or measure length between electrodes and width of shading using the squared paper Measure R at different values of length Plot graph of R vs length Calculate thickness using gradient = resistivity / (width × thickness) 	(1) (1) (1) (1)	4
1(b)(ii)	Any ONE from Contact resistance between electrode and pencil shading Zero error on ohmmeter (Accept zero error for a suitable measuring device named in (b)(i)) Electrodes not parallel	(1) (1) (1)	1
	Total for question 1		8

Question Number	Answer		Mark
2(a)(i)	To ensure the sound waves are coherent Or to ensure the two waves have a constant phase relationship Or to ensure the two sound waves have the same frequency and wavelength Or to ensure the sound waves are produced in phase	(1)	1
2(a)(ii)	 Loud sound could damage hearing/ears (accept named part of the ear e.g., ear drum) Wear ear defenders/plugs Or limit the volume of sound Or limit the duration/time of the exposure Or do not stand too close to the loudspeakers 	(1)	2
2(b)(i)	 Subtraction of distance between two maxima Calculation of average distance between maxima using a minimum of 3 gaps w = 0.62 m Example of calculation Total distance = 3.33 - 0.22 = 3.11 m Number gaps = 5 w = 3.11 / 5 = 0.62 m 	(1) (1) (1)	3
2(b)(ii)	• Use of $w = \lambda D / s$ • Correct value of λ to 2 s.f. with correct unit Allow e.c.f. from 2(b)(i) Example of calculation $\lambda = sw / D = 1.10 \text{ m} \times 0.62 \text{ m} / 4.0 \text{ m} = 0.1705 = 0.17 \text{ m}$	(1) (1)	2
2(b)(iii)	 The connections to one of the speakers were reversed Or waves emitted from the two speakers are in antiphase So destructive interference takes place 	(1) (1)	2
2(c)(i)	 As v = f λ, so the frequency would need to be determined States suitable apparatus to measure the <u>frequency</u> (e.g. frequency meter, oscilloscope, suitable app on a mobile phone, etc.) 	(1) (1)	2
2(c)(ii)	 As λ = v/f, λ will increase (for a constant f) Or if v increases (for a constant f,) λ will increase (As w = λ D/s), w will increase as D and s remain constant OR	(1) (1)	
	 w = v D / f s Hence as v increases, w will increase as f, D and s remain constant 	(1) (1)	2
	Total for question 2		14

Question Number	Answer		Mark
3(a)(i)	 The uncertainty would be 0.05 cm Or resolution would be 0.1 cm The percentage uncertainty would be about 1% (which is small) Allow MP1 for correct uncertainty as seen in a calculation. Accept uncertainty as full resolution (0.1 cm) giving percentage uncertainty of 2% for MP2 	(1) (1)	2
3(a)(ii)	 Max TWO from Attach a marker to the spring Or use a set square between ruler and spring Or ensure ruler is close to spring View the scale at right angles Ensure the ruler is at zero at the support Ensure the ruler is vertical using a set square 	(1) (1) (1) (1)	2
3(b)(i)	• Number of decimal places varies (for both W and l)	(1)	1
3(b)(ii)	 The student should check the value at W = 0.39 N, l = 12 cm As it is furthest from the line of best fit 	(1) (1)	2
3(b)(iii)	• W in the range of 0.22 to 0.24 (N)	(1)	1
3(c)(i)	 Use of density of modelling clay = density water × W₁ / (W₁ - W₂) Density of modelling clay = 1700 kg m⁻³ Example of calculation Density of modelling clay = 1000 kg m⁻³ × 0.65 N / (0.65 N - 0.27 N) Density of modelling clay = 1710 kg m⁻³ 	(1) (1)	2
3(c)(ii)	 Calculation of relevant limit of density of modelling clay from (c)(i) Conclusion consistent with calculated limit/range Example of calculation Limit of density = 1710 × 1.04 = 1778 kg m⁻³ As this is above value 1760 kg m³ then it could be polymer clay OR Calculation of percentage difference (from 1760 kg m⁻³) Conclusion based on comparison of the percentage difference and 4 % Example of calculation Percentage difference = (1760 kg m⁻³ – 1710 kg m⁻³) / 1760 kg m⁻³ × 100% = 2.8 % As this is less than 4 % then it could be polymer clay Allow e.c.f. from 3(c)(i) 	(1) (1) (1) (1)	2
	Total for question 3		12

Question Number	Answer		Mark
4(a)(i)	 Calculation of mean Mean t = 3.56 (s) to 3 s.f. 	(1) (1)	2
	Example of calculation Mean value of time = $(3.57 \text{ s} + 3.61 \text{ s} + 3.54 \text{ s} + 3.51 \text{ s}) / 4 = 3.5575 = 3.56 \text{ s}$		
4(a)(ii)	Use of half range for uncertainty Or uncertainty = max distance from the mean	(1)	
	Percentage uncertainty = 1.4%	(1)	2
	Allow e.c.f. from 4(a)(i)		
	Example of calculation Uncertainty = half range = $(3.61 \text{ s} - 3.51 \text{ s}) / 2 = 0.05 \text{ s}$ Percentage uncertainty = $0.05 \text{ s} / 3.56 \text{ s} \times 100\% = 1.4 \%$		
4(b)	Place a light gate (at each marker) To (at a light gate (at each marker))	(1)	
	To (start and) stop an electronic/digital timer Or use a datalogger/computer to determine the time	(1)	
	OR		
	 Use video camera Valid method to find time (e.g., count the number of frames) 	(1) (1)	2
4(c)(i)	 Rearranges equation to F = (M/t) v and compares with y = mx (+ c) So, the gradient = M/t 	(1) (1)	
	OR		
	 Rearranges equation to F/v = M/t States that gradient of graph = F/v 	(1) (1)	
	OR		
	• Rearranges equation to $t = M v / F$	(1)	
	 States that gradient of graph = F/v Or states that 1/gradient of graph = v/F 	(1)	2

